Treatment Selection, Design, and Performance for Two Heavy Industrial Facilities

Port of Seattle
Terminal 46 Cargo Facility

Port of Tacoma
West Hylebos Pier Log Yard

Sheila Sahu, P.E.
NEBC 2016
Outline for Each Facility

- Overview
- Treatment Goals
- Treatment Selection
- Treatment Design
- Performance Results
Port of Seattle T46: Overview

- 90-acre marine cargo import/export facility
- Discharges to Elliot Bay from 4 drainage basins
- Tenant was threatened with a Clean Water Act lawsuit
- Hired K/J to evaluate alternatives for Port & Ecology approval
- Treatment construction complete end of 2014
Port of Seattle T46: Treatment Goals

- Meet Industrial Stormwater General Permit (ISGP) requirements
- Maximize:
 - Terminal operational space
 - Use of the existing infrastructure
- Account for:
 - Tidal influence
 - Heavy wheel loads
Port of Seattle T46: Treatment Selection

- Target pollutants: Cu, Zn, Turbidity
- Meets Ecology All Known, Available and Reasonable methods of prevention, control and Treatment (AKART) standards
- Gravity-based/ low energy
- Flexibility of media selection
- Potential to control pollutants beyond facility control (e.g., atmospheric deposition)
Port of Seattle T46: Treatment Selection

14 alternatives evaluated per area and costs that were various combinations of:

- 4 Conveyance Alternatives
- 7 Treatment Alternatives

Modular Wetland System (MWS) and Up-Flo Filter selected for further evaluation.
Port of Seattle T46: Treatment Selection

In-field pilot studies for each drainage basin:

- Conducted at night and mounted on flatbed truck for less facility disruption
- Design flow rates
 - MWS at 6 gpm
 - Up-Flo at 10 gpm
- MWS had higher pollutant removal but would be abovegrade and pumped
Port of Seattle T46: Treatment Design

Up-Flo selected for design:

- 3 subsurface vaults, each treating a 20-acre drainage basin
- Used proprietary bone char, peat and zeolite (CPZ) media mix
- Port pre-purchased vaults to fast track design and implementation
Port of Seattle T46: Treatment Design

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Purchase Vaults</td>
<td>$0.5M</td>
</tr>
<tr>
<td>Analysis, Pilot Testing & Design</td>
<td>$0.4M</td>
</tr>
<tr>
<td>Construction</td>
<td>$2.0M</td>
</tr>
<tr>
<td>Total</td>
<td>$2.9M</td>
</tr>
</tbody>
</table>
Port of Seattle T46: Performance Results

<table>
<thead>
<tr>
<th></th>
<th>Cu (µg/L)</th>
<th>Zn (µg/L)</th>
<th>Turbidity (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA ISGP Benchmark</td>
<td>14</td>
<td>117</td>
<td>25</td>
</tr>
<tr>
<td>Influent- All Basins</td>
<td>4-49</td>
<td>81-783</td>
<td>3-95</td>
</tr>
<tr>
<td>(mean, %exceed)</td>
<td>(16, 32%)</td>
<td>(300, 89%)</td>
<td>(23, 32%)</td>
</tr>
<tr>
<td>Effluent- All Basins</td>
<td>1-38</td>
<td>11-570</td>
<td>3-79</td>
</tr>
<tr>
<td>(mean, %exceed)</td>
<td>(11, 19%)</td>
<td>(188, 46%)</td>
<td>(17, 15%)</td>
</tr>
</tbody>
</table>

- Overall decrease in pollutant concentrations and sample exceedances
- Ongoing troubleshooting of source control operations and O&M to eliminate effluent exceedances
PORT OF TACOMA
WEST HYLEBOS PIER (WHP)
Port of Tacoma WHP: Overview

- 25-acre marine log yard facility
- Discharges to Hylebos Waterway
- Tenant triggered ISGP corrective action
- Hired K/J to evaluate alternatives per AKART
- Treatment construction complete end of 2013
Port of Tacoma WHP: Treatment Goals

- Meet ISGP requirements
- Provide treatment for bark flour for which sweeping is difficult
Port of Tacoma WHP: Treatment Selection

- Target pollutants: Cu, Zn, COD, Turbidity
- Meets Ecology AKART standards
- Treatment costs considered Port revenue loss and 30-year life cycle costs
Port of Tacoma WHP: Treatment Selection

Alternatives analysis included:

- Transfer of runoff to City’s sanitary sewer system
- Constructed wetlands
- Biofiltration
- Advanced treatment via settling, oxidation, coagulation, flocculation, and adsorptive media filtration
Port of Tacoma WHP: Treatment Selection

Pilot testing for media filtration pretreatment followed by biofiltration:

- Defined hydraulic requirements
- Guided material selection:
 - Pretreatment sand filter media
 - Biofiltration mix
 - Aggregate type and gradation
 - Plantings
Port of Tacoma WHP: Treatment Design

Pumped biofiltration chosen for design:

- Could handle log handling facility and other future tenants
- Enhanced flow control via variable speed pumps and actuated valves
Port of Tacoma WHP: Treatment Design

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis, Pilot Testing & Design</td>
<td>$0.7M</td>
</tr>
<tr>
<td>Construction</td>
<td>$2.9M</td>
</tr>
<tr>
<td>Total</td>
<td>$3.6M</td>
</tr>
</tbody>
</table>
Port of Tacoma WHP: Performance Results

<table>
<thead>
<tr>
<th></th>
<th>Cu (µg/L)</th>
<th>Zn (µg/L)</th>
<th>COD (mg/L)</th>
<th>Turbidity (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA ISGP Benchmark</td>
<td>14</td>
<td>117</td>
<td>120</td>
<td>25</td>
</tr>
<tr>
<td>Influent- All Basins</td>
<td>7-72</td>
<td>68-682</td>
<td>77-3,200</td>
<td>68- >1,000</td>
</tr>
<tr>
<td>(mean, %exceed)</td>
<td>(24, 71%)</td>
<td>(204, 80%)</td>
<td>(1,247, 98%)</td>
<td>(100% exceed)</td>
</tr>
<tr>
<td>Effluent- All Basins</td>
<td>0.5-12.5</td>
<td>0.5-21</td>
<td>23-310</td>
<td>5.6-24.5</td>
</tr>
<tr>
<td>(mean, %exceed)</td>
<td>(5.9, 0%)</td>
<td>(11.5, 0%)</td>
<td>(111, 20%)</td>
<td>(12, 0%)</td>
</tr>
</tbody>
</table>

- COD met in 3rd quarter of 2014; other ISGP benchmark met immediately after install
- Minimal O&M costs for flow distribution and media management
- Ongoing plant monitoring for effectiveness